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ABSTRACT

Shear instabilities can be the source of significant amounts of turbulent mixing in
stellar radiative zones. Past attempts at modeling their effects (either theoretically
or using numerical simulations) have focused on idealized geometries where the shear
is either purely vertical or purely horizontal. In stars, however, the shear can have
arbitrary directions with respect to gravity. In this work, we use direct numerical
simulations to investigate the nonlinear saturation of shear instabilities in a stably
stratified fluid, where the shear is sinusoidal in the horizontal direction, and either
constant or sinusoidal in the vertical direction. We find that, in the parameter regime
studied here (non-diffusive, fully turbulent flow), the mean vertical shear does not play
any role in controlling the dynamics of the resulting turbulence unless its Richardson
number is smaller than one (approximately). As most stellar radiative regions have a
Richardson number much greater than one, our result implies that the vertical shear can
essentially be ignored in the computation of the vertical mixing coefficient associated
with shear instabilities for the purpose of stellar evolution calculations, even when it is
much larger than the horizontal shear (as in the solar tachocline, for instance).

Keywords: Astrophysical fluid dynamics (101), Hydrodynamics (1963), Stellar evolution
(1599), Stellar physics (1621), Hydrodynamical simulations (767), Stellar
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1. INTRODUCTION

Quantifying vertical mixing by shear instabilities in stellar radiative zones is a long-standing ques-
tion that dates back to the 1970s and the works of Zahn (1974) (see also Schatzman 1969; Spiegel
& Zahn 1970). Indeed, shear is ubiquitous in stars. For instance, the gradual spin-down of the
stellar surface by magnetized winds naturally generates some level of radial shear on a global scale
via angular momentum transport (Spada et al. 2016). Similarly, large-scale meridional flows ad-
vecting the star’s mean angular momentum poleward or equatorward naturally drive the emergence
of a global-scale latitudinal shear (Zahn 1992; Spiegel & Zahn 1992). More localized shear layers
can be maintained in the vicinity of a differentially-rotating convection zone, as evidenced by the
helioseismic discovery of the solar tachocline, which has both strong radial and latitudinal shear
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(Christensen-Dalsgaard & Schou 1988; Thompson et al. 1996). Internal gravity waves can in some
cases amplify pre-existing shear and create strong localized radial shear layers in a star (Kumar &
Quataert 1997; Kumar et al. 1999; Charbonnel & Talon 2005).
Under the right conditions, the kinetic energy of the shear can drive and maintain turbulence via

shear instabilities (Richardson 1920). It is therefore important to understand what these conditions
are and to quantify the resulting vertical mixing. This problem turns out to be particularly complex,
however, because shear instabilities can take many different forms depending on the orientation of the
shear with respect to the density stratification, as well as the strength and even the shape of the shear
and density profiles (cf. Drazin & Reid 2004; Caulfield 2021). Shear instabilities can also be affected
by diffusion (viscous, thermal, or compositional), rotation and magnetic fields (Chandrasekhar 1961).
For these reasons, one must take a very gradual approach in studying the problem, adding only one
new physical effect at a time to fully grasp its impact on the properties of the developing turbulence.
Furthermore, while other instabilities can often be studied quite successfully using linear stability
theory (i.e. stability to infinitesimal perturbations), this is rarely the case with shear instabilities. As
long as viscosity is small, they can almost always be destabilized by suitably chosen finite-amplitude
perturbations even when the background flow is linearly stable (see, e.g. Grossmann 2000; Garaud
et al. 2015; Avila et al. 2023), and thus, the outcome sensitively depends on the initial conditions
applied. As a result, studying the conditions for instability and resulting turbulent mixing often
requires a combination of heuristic arguments and heavy-duty computational tools.
For all of these reasons, progress in modeling mixing by shear instabilities in stars has been relatively

slow, focusing for now on understanding simple geometries (vertical shear only, or horizontal shear
only), ignoring the effects of magnetic fields (except in linear stability analyses) and mostly including
the effect of rotation only insofar as it is the source of the shear in stars with differential rotation, but it
is ignored thereafter. Within that limiting set of assumptions, however, starting with the work of Zahn
(1974) and Zahn (1992), combined with the more recent theoretical work and numerical experiments
performed over the past 10 years (see the reviews of Lignières (2020) and Garaud (2021), as well as
Sections 1.1 and 1.2 below), we now have a growing understanding of the criterion for instability. We
also have models for the turbulent mixing associated with (non-rotating, non-magnetic) vertical and
horizontal shear instabilities when these processes are considered independently.
The main goal of this paper is to expand on this previous work to determine what happens to

mixing by shear instabilities when vertical and horizontal shear are both present in a (non-rotating,
non-magnetic) stably stratified region at the same time. With this in mind, we begin by briefly
reviewing what is known about mixing by horizontal and vertical shear instabilities separately, which
will also serve as a pedagogical introduction to the concepts needed for the interpretation of the data
presented in this paper.

1.1. What is known about (non-rotating, non-magnetic) vertical shear instabilities

Loosely defined, vertical shear instabilities are processes that extract energy from the local vertical
shear to generate and maintain some amount of vertical mixing. To do so in a stellar radiative
zone, the shear must be strong enough to overcome the stabilizing effects of both viscosity and
stratification. Because the viscosity is very small in stars, one could naively assume that it is never
relevant – and that is often, but not always the case (see below). Stratification, on the other hand,
plays a dominant role in quenching vertical shear instabilities. Indeed, in order to tap into the mean
shear kinetic energy reservoir, the turbulent eddies must move vertically but incur a corresponding
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potential energy cost when doing so adiabatically. The competition between the kinetic energy gain
and potential energy cost is loosely captured by the so-called Richardson number J , defined here as
the square of the ratio of the mean buoyancy frequency N to the mean vertical shearing rate Sm, i.e.

J =
N2

S2
m

. (1)

Assuming viscous and thermal diffusion are both negligible, the rate at which eddies can gain kinetic
energy from the mean flow is proportional to S2

m, while the rate at which they lose potential energy
to the stratification is proportional to N2. Vertical shear instabilities can therefore develop (linearly
or nonlinearly) provided J is (roughly) smaller than one (Richardson 1920). A similar criterion that
describes a necessary condition for the onset of linear instability can be derived more formally (cf.
Howard 1961); in that case, the existence of an extremum in the shearing rate, or in other words, an
inflection point in the flow profile, is generally also required (Fjørtoft 1950; Drazin & Reid 2004).
It is quite unusual, however, for stars to have extended regions that satisfy J ≤ 1 for long periods

of time, except very close to the edge of a convective zone (where N → 0), or when an external
mechanism is present to sustain an intense shear (such as accretion of material from a disk, see
MacDonald 1983; Avila et al. 2023). As such, the ‘dynamical’ shear instabilities listed above do not
appear to play a significant role in stellar evolution.
All of the aforementioned arguments have assumed adiabatic perturbations, which is not necessarily

the case if the stratification is primarily due to temperature and thermal diffusion is fast compared
with the local dynamics. In the early 1970s, progress in understanding shear instabilities in the
Earth’s atmosphere (Townsend 1958), where perturbations are not adiabatic due to radiative losses,
led Spiegel & Zahn (1970) to the realization that rapid thermal diffusion would have a similar effect
in stellar interiors. Zahn (1974, 1992) then proposed the first model of thermally diffusive vertical
shear instabilities (now often referred to as ‘secular’ shear instabilities), where he argued that they
mix momentum and chemical species vertically with a diffusivity

Dmix = O
(κT

J

)
as long as JPr ≪ C where C ∼ O(0.001), (2)

and where Pr = ν/κT is the Prandtl number, ν is the viscosity and κT is the thermal diffusivity. A
series of direct numerical simulations (DNS hereafter) by Prat & Lignières (2013, 2014); Prat et al.
(2016), as well as Garaud & Kulenthirarajah (2016) and Garaud et al. (2017) confirmed the validity
of (2) as long as J ≫ 1 and thermal diffusion is important on the scale of the shear layer.
In practice, however, Dmix is always fairly small in secular shear instabilities (at most, a couple

of orders of magnitude larger than ν, see Garaud 2021). For this reason, they are not usually a
significant source of mixing unless no other instabilities are present.

1.2. What is known about (non-rotating, non-magnetic) horizontal shear instabilities

While vertical shear instabilities are either rare (in the dynamical regime) or not very efficient at
mixing (in the secular regime), Zahn (1992) realized that horizontal shear instabilities could be a much
more reliable source of mixing. Horizontal shear instabilities extract energy from the horizontal shear,
and perturbations do not incur any potential energy cost as long as the motions remain horizontal. As
such, as long as magnetic fields and rotation are ignored, a horizontal shear is almost always unstable
to purely horizontal perturbations (Balmforth & Young 2002; Arobone & Sarkar 2012; Cope et al.
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2020; Park et al. 2020), that drive a meandering of the mean flow, and/or the formation of large-scale
‘pancake’-like vortices. The low viscosity then implies that these meanders and vortices decouple in
the vertical direction, thus leading to the emergence of strong vertical shear on small vertical scales,
even in the absence of any mean vertical shear. Small-scale vertical shear instabilities, and associated
vertical mixing, can thus be triggered by the presence of an unstable large-scale horizontal shear.
This general picture has been validated in DNS of Cope et al. (2020) and Garaud (2020a) (see more
on this below).
By contrast with the case of vertical shear instabilities where models generally agree with each other,

and with the data from numerical simulations, quantifying mixing by horizontal shear instabilities
is a topic of ongoing investigations where no consensus has yet been reached. Several theoretical
models have been put forward, starting with Zahn (1992), followed by the more recent works of Cope
et al. (2020), Garaud (2020a), Lignières (2020), Chini et al. (2022), Skoutnev (2023) and Shah et
al. (in prep). These models vary significantly in their detailed predictions because of differences
in their respective founding assumptions and in the mathematical approach selected, and because
their domains of validity are sometimes limited. It is not the purpose of this section to discuss each
model in turn, as it would be difficult to do so without any bias. Instead, we summarize here what
general agreement the models have, with the hope that these are concepts that can be relied upon
with reasonable confidence.
Generally speaking, all models attempt to relate the vertical mixing coefficient Dmix to properties

of the horizontal turbulence. Zahn (1992), for instance, directly related Dmix to the horizontal
turbulent diffusivity νh, while the other models relate Dmix to the assumed properties of large-
scale horizontal eddies (which have characteristic large-scale horizontal velocity Uh and lengthscale
Lh). It is also generally agreed that as long as the flow is turbulent, Dmix ∝ lzwrms (where lz is a
characteristic vertical eddy lengthscale and wrms is a characteristic vertical eddy velocity), and that
both of these quantities must decrease with the increasing stratification and associated potential
energy cost. Finally, we know that there ought to be different regimes depending on whether the
turbulent Péclet number based on wrms and lz, namely Pet = wrmslz/κT , is larger than 1 (adiabatic
regime) or smaller than 1 (diffusive regime), and that the transition between the two regimes is a
function of the stratification and of the thermal diffusivity. It is also worth noting that viscosity is
expected to become relevant once the stratification exceeds some threshold, although not all models
take this into account. Because of this, the partitioning of parameter space into various regimes is
relatively complex (see, for instance, Shah et al, in prep.).
The main disagreements between the models emerge in the derivations of wrms and lz as functions

of the properties of the horizontal turbulence. This also affects where the boundaries of the various
regimes (adiabatic, diffusive, viscous) lie in parameter space. While the theoretical controversy is
ongoing, there is some hope of gaining insight from DNS data. Cope et al. (2020) and Garaud
(2020a) recently ran a series of DNS of horizontally sheared, stratified Kolmogorov flows at low
Prandtl number. In these simulations, a constant-in-time body force F = F0 sin(khy)ex is applied
to drive a vertically invariant, sinusoidal flow. The anticipated horizontal eddy scale is therefore
an input parameter, Lh = O(k−1

h ), while the anticipated horizontal velocity scale is also an input
parameter, obtained from balancing the nonlinear terms and the forcing in the streamwise component
of the momentum equation: Uh = O(

√
F0/ρmkh) where ρm is the mean density of the fluid. Cope

et al. (2020) explored cases where thermal diffusion is important at all scales, so the Péclet number
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based on the large scales, Pe = UhLh/κT , is smaller than 1. Meanwhile Garaud (2020a) explored
cases where thermal diffusion is negligible on the large scales (Pe ≫ 1).
In the thermally diffusive regime (Pe < 1), Cope et al. (2020) found, rather robustly, that there

exists an intermediate regime of stratified turbulence where

Dmix ≃ wrmslz ∝
(
UhκT

L3
hN

2

)1/2

UhLh. (3)

This regime is valid as long as the vertical scale of the turbulent eddies is much smaller than the
domain size, but yet large enough to not be influenced by viscosity. The scaling law (3) is consistent1

with the model predictions from Zahn (1992), Cope et al. (2020), Lignières (2020), and Skoutnev
(2023) in their respective thermally-diffusive regimes, which is rather surprising as the scalings for
wrms and lz individually differ in each model.
However, the constraint Pe < 1 is rarely satisfied in stars. In the case where Pe ≫ 1, Garaud

(2020a) found that (3) does not always apply and that two regimes exist depending on whether the
turbulent Péclet number Pet defined above is larger or smaller than one. More specifically, Dmix

is independent of the thermal diffusivity when Pet ≫ 1, but recovers the diffusive results of Cope
et al. (2020) when Pet ≪ 1. Unfortunately, as Pet is an emergent quantity (rather than an input
parameter), a model is needed to predict when the transition from non-diffusive to thermally diffusive
turbulence occurs as a function of the input parameters. Here, the disagreement between the models
themselves is significant; for instance, Skoutnev (2023) finds that the solar tachocline would lie close
to the regime transition while Shah et al. (in prep) argue instead that it lies squarely in the adiabatic
regime. Models and DNS also disagree quite substantially on predictions for lz and wrms in that
limit, which is likely due to the fact that achieving the extreme parameter regimes where the models
ought to be valid is very challenging numerically.

1.3. Outline of the proposed work

While we will need to wait for future DNS to validate and/or invalidate existing models, we now
return to the original question posed earlier, namely what happens when mean vertical and horizontal
shear are combined, which is the more relevant scenario in stellar interiors. Indeed, the interplay
between rotation, meridional circulations, spin-down by stellar winds, and shear instabilities naturally
contributes to the maintenance of a large scale rotational shear in both radius and latitude, clarified
in the seminal paper by Zahn (1992). The solar tachocline, for example, supports a large-scale
horizontal differential rotation (with the equator rotating approximately 30 percent faster than the
poles), as well as the well-known sharp vertical shear that is at the origin of its name (Zahn 1992).
Red Giant Branch (RGB) stars are known to have substantial radial shear between the core and
envelope (see Aerts et al. 2019, and references therein) which must necessarily be associated with
horizontal shear by Zahn’s argument. Conversedly, stars with outer convective zones can exhibit
substantial surface latitudinal differential rotation (Reinhold et al. 2013) which, by analogy with the
solar tachocline, suggests the likely existence of strong radial shear below.
In this study, we continue past investigations by Garaud & Kulenthirarajah (2016); Garaud et al.

(2017), Cope et al. (2020) and Garaud (2020a), and run a series of DNS experiments which combine

1 assuming some flexibility in the interpretation of what Uh and Lh are
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vertical and horizontal shear to address the effects of the former on the latter. Our goal is to establish
a set of guiding principles to determine if and when one type of instability clearly dominates over
the other, or when both interact in such a way that they cannot be modeled separately. We focus
on the high Péclet number regime (Pe ≫ 1) defined earlier, which is arguably the more relevant
situation for the majority of stars (Garaud 2020a). Section 2 describes the model setup, in which
two different vertical shear profiles (constant or sinusoidal) are tested. Section 3 presents our results,
both qualitatively and then more quantitatively. Finally, Section 4 summarizes our results while
discussing important caveats of our model assumptions.

2. MODEL SETUP

In what follows, we consider a stably-stratified (i.e., radiative) region of a star. Gravity defines the
vertical direction (g = −gez), and the vertical extent of the domain is assumed to be much smaller
than a density, pressure or temperature scaleheight. With this assumption, the local Brunt-Väisälä
frequency N is approximately constant. We use the Boussinesq approximation for gases (Spiegel &
Veronis 1960), noting that fluid flows in the deep interiors of stars are much slower than the local
sound speed. A mean horizontal flow is driven by application of a body force F = Fex, and/or the use
of a shearing box (see below for more detail). We then study the development of shear instabilities
on this mean flow, ignoring in this work the effects of rotation and magnetic fields. This assumption
is made for simplicity and is briefly discussed in Section 4. Future work will investigate their effects
separately.
The governing equations describing this model are

∂u

∂t
+ u · ∇u = − 1

ρm
∇p+ αgTez + ν∇2u+

1

ρm
Fex, (4)

∇ · u = 0, (5)

∂T

∂t
+ u · ∇T +

N2

αg
w = κT∇2T. (6)

where u = (u, v, w) is the velocity field, T is the potential temperature fluctuation away from the
stably-stratified background state, and p is the pressure fluctuation away from hydrostatic equilib-
rium. In addition, ρm is the mean density of the fluid, α is the coefficient of thermal expansion, ν
is the viscosity, and κT is the thermal diffusivity. All of these fluid properties are assumed to be
constant in the small region considered. The body force F varies sinusoidally in the y direction, with
a horizontal wavenumber kh = 2π/Ly where Ly is the domain width.
We then non-dimensionalize the equations as in Cope et al. (2020) and Garaud (2020a). We use

kh as the inverse unit length. Anticipating a balance between the forcing and the inertial terms in
the horizontal component of the momentum equation, we define

UF =

(
F0

ρmkh

)1/2

, (7)

where F0 is the amplitude of the sinusoidal body force, and use UF as the unit velocity. The unit
time is then defined as khUF and the unit temperature as N2/αgkh. Note that since the lengthscale
used in (7) is k−1

h , this non-dimensionalization more appropriately captures the scalings of anticipated
horizontal shear instabilities than of vertical shear instabilities (which would likely care about the
vertical lengthscale of the shear or the domain height Lz).
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The non-dimensional governing equations corresponding to (4)-(6) are then:

∂û

∂t
+ û · ∇û = −∇p̂+BT̂ez +Re−1∇2û+ F̂ex, (8)

∇ · û = 0, (9)

∂T̂

∂t
+ û · ∇T̂ + ŵ = Pe−1∇2T̂ . (10)

In that follows, hatted quantities are non-dimensional, while those without hats are dimensional, ex-
cept for the independent variables x, y, z, t and associated operators which are always non-dimensional
(hats in this case are removed to avoid crowding the notation). Several parameters are introduced
in these equations: the domain-scale Reynolds number Re, which is the ratio of the viscous diffusion
timescale to the turbulent advection timescale; the domain-scale Péclet number Pe, which is the ratio
of the thermal diffusion timescale to the turbulent advection timescale; and the buoyancy parameter
B, which is the square of the ratio of the Brunt-Väisälä frequency N to the horizontal shearing rate
khUF of the anticipated mean flow:

Re =
UF

khν
, Pe =

UF

khκT

and B =
N2

k2
hU

2
F

. (11)

As we are interested in studying the combination of vertical and horizontal shear on the development
of shear instabilities, we note that there are different possible ways of driving the shear. In this work,
we always drive the horizontal shear using a body force as in Cope et al. (2020) and Garaud (2020a),
so the results can be compared with their work in the limit where the vertical shear is zero. To apply
vertical shear, however, there are several options. One of them is to use the standard shearing box
formalism (as in, e.g., Prat et al. 2016) and drive a constant vertical shear. Another option is to use
a body force that is sinusoidal in both horizontal and vertical directions. Both types of shear may be
expected in stars. For instance, the constant shear case would be appropriate to model stars where
the vertical shear varies slowly with depth. On the other hand, the sinusoidal shear case could be
appropriate to model stars with complex vertical shear profiles, such as the ones that can be driven
by the nonlinear interaction between gravity waves and differential rotation.
In what follows, we use and compare both options, which serves two purposes. First, it might help

us establish the role of the vertical shear lengthscale on the emergent turbulence. In the sinusoidal
model proposed below, the vertical shear lengthscale is finite while it is infinite in the constant shear
case. Second, and likely more importantly, a sinusoidal vertical shear has an inflection point, and
can excite a linear vertical shear instability provided the Richardson number is small enough. In
the constant shear case, by contrast, the vertical shear is not (on its own) linearly unstable even at
low Richardson number. One might therefore expect to obtain rather different outcomes in the two
cases.
These two different options require two different codes, but are both based on the PADDI code

that was already used in the works of Cope et al. (2020) and Garaud (2020a). PADDI is a high-
performance, triply-periodic pseudo-spectral DNS code, described in Traxler et al. (2011) (see Ap-
pendix A).

2.1. Sinusoidal shear in the horizontal direction and uniform shear in the vertical direction
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In a first model setup, we apply the same non-dimensional body force in equation (8) as in Cope
et al. (2020) and Garaud (2020a), namely,

F̂ = F̂ex = sin(y)ex. (12)

In addition, we drive a constant vertical shear using the shearing-box formalism. The numerical
methodology is, overall, quite similar to the PADDI code, and is described in detail in Brown &
Radko (2021). In this formalism, the simulation grid deforms over time, following the flow of the
(prescribed) uniform non-dimensional vertical shear, Ŝ, which is described by the following coordinate
transformation:

x′ = x+ Ŝzt, y′ = y, z′ = z, t′ = t. (13)

The Fourier modes of the simulation are expanded as complex exponentials in the primed coordi-
nate system, and thus, in addition to horizontal periodicity in x and y, the fields are assumed to
be periodic in z′ instead of z. When the inclination of the grid, ∂z′/∂x′ exceeds L̂z/2L̂x, the simu-
lation is remapped to a new coordinate system with an inclination of ∂z′′/∂x′′ = ∂x′/∂z′ − Lz/Lx.
This transformation is performed with the appropriate dealiasing (Delorme 1985). Transforming the
system in this way ensures minimal cell deformation and retains periodicity in the new coordinate
system. Note that in these simulations, the velocity field û models flow perturbations around a state
of constant shear, rather than the full flow field.
In all simulations, the non-dimensional size of the domain is fixed to L̂x = 4π and L̂y = L̂z = 2π.

Selecting a domain that is at least twice a long in the x direction as in the y direction ensures
that it contains at least one wavelength of the fastest-growing mode of the primary horizontal shear
instability (Cope et al. 2020). The resolution is fixed to have 384 equivalent grid points per interval
of length 2π in each direction, which ensures that they are all well-resolved at the parameters selected
(see below).
The initial conditions for the simulation are either û(x, y, z, 0) = sin(y)+ µ̂(x, y, z) where µ̂ is some

small amplitude white noise, or, the simulation is continued from the end of another simulation at
different values of B (this greatly helps reduce compute time). The final statistically stationary state
achieved by the simulations seems to be independent of the initial conditions, at least for the cases
run here2.

2.2. Sinusoidal shear in the horizontal and vertical directions

In a second model setup, we force the mean shear with a body force that varies sinusoidally in both
horizontal and vertical directions, such that

F̂ = F̂ex = sin(y + Ŝz)ex. (14)

As in the case with constant vertical shear described above, the non-dimensional horizontal di-
mensions of the domain are L̂x = 4π and L̂y = 2π. To ensure periodicity in the vertical direction,
we choose L̂z = 2π/Ŝ unless otherwise specified. The resolution is 384 equivalent grid points per
interval of length 2π in each direction, as above, so the results of the constant vertical shear case and
the sinusoidal vertical shear case can easily be compared to one another. For the largest shearing

2 It is quite likely that different final states could exist if the initial temperature profile is not linear.
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Figure 1. Illustration of the sinusoidally-sheared model setup showing the forcing profile ∝ sin(y + Ŝz), in
the different configurations: Ŝ = 0.577, 1, 2, 4. In each case, L̂z = 2π/Ŝ to ensure periodicity. For the Ŝ = 4
case, additional simulations were run with L̂z = 2π, hence both are shown here.

rate considered in our simulations, namely Ŝ = 4, taking L̂z = π/2 results in a rather short verti-
cal domain. Worrying that this could artificially impact the results, we also ran simulations with
L̂z = 2π, but found that the time-averaged mean properties of the flow extracted in the shorter and
taller domain sizes are very similar (see Table 3.1). We therefore kept the larger L̂z = 2π runs for
the Ŝ = 4 case (since they were available) but were satisfied with a shorter domain height L̂z = π
for the Ŝ = 2 simulations.
The initial conditions for the simulations are either û(x, y, z, 0) = sin(y + Ŝz) + µ̂(x, y, z) or the

simulation is restarted from the end of another simulation at different values of B. Again, the final
statistically stationary state achieved appears to be independent of the initial conditions with the
same caveat as above.

3. RESULTS

3.1. Simulations parameters

In what follows, we present a large suite of DNS of horizontally and vertically sheared stratified
flows. In almost all cases, we have run simulations at the same parameters for the case of constant
and sinusoidal vertical shear, which enables us to distinguish between their effects in controlling the
properties of the turbulence. The results presented have a Reynolds number Re = 600, which is the
largest value we can realistically achieve while at the same time running a large number of simulations.
As shown by Garaud (2020a) in the case without vertical shear, Re = 600 is large enough to ensure
that the effects of viscosity on the flow dynamics are essentially negligible, except for the largest
stratification selected below (B = 100), where they are partially suppressing the turbulence. The
Prandtl number is fixed to be Pr = 0.1, which is substantially smaller than one, while at the same
time ensuring that the Péclet number based on the large-scale horizontal flow remains very large
(Pe = 60). This parameter regime, where both Re and Pe are large, but Pr is small, is consistent
with what one would expect in stellar interiors, but the numerical values achieved are much less
extreme than in reality (where Re and Pe are generally many orders of magnitude larger, and Pr is
many orders of magniture smaller, see Garaud 2020a).
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Having fixed Re = 600, Pe = 60, we then ran a grid of simulations for B ∈ {1, 10, 30, 100} and
Ŝ ∈ {0, 0.577, 1, 2, 4}. The range of B was selected to span regimes where the turbulence is effectively
unstratified (B = 1), where stratification controls but does not inhibit the turbulence (B = 10 and
B = 30) and where stratification is sufficiently strong to intermittently suppress the turbulence
(B = 100); see Cope et al. (2020) and Garaud (2020a) for a description and characterization of these
various regimes. Note that the threshold values of B that respectively delimit the three regimes
(when Ŝ = 0) depend on the Reynolds and Péclet number, so the choices made here are only valid
for Re = 600, Pe = 60 (see Shah et al., in prep, for a more complete map of parameter space).
The range of Ŝ was selected to span regimes of zero and weak vertical shear (Ŝ = 0.577), moderate
vertical shear (Ŝ = 1, for which the typical horizontal and vertical shear are the same) and large
vertical shear (up to Ŝ = 4). We did not run simulations for Ŝ larger than 4, as these require much
smaller timesteps and become too computationally expensive. The model parameters, and salient
results, are presented in Table 3.1.
This choice of parameters implies that the vertical shear instabilities expected of the mean shear

alone would be of the dynamical kind, should they take place. Indeed, we can define a Péclet number
based on the vertical shear to be

PeS =
SL2

S

κT

, (15)

where S is the dimensional shearing rate, and LS is the dimensional vertical shear lengthscale. In
the models described above, LS = (Ŝkh)

−1 for the sinusoidally-sheared case (so PeS = Pe/Ŝ), and
LS is technically infinite in the constant shear case, but in practice is related to size of the domain
Lz (so PeS = ŜPe). With the choice of parameters selected here, PeS is always much greater than
one. Based on the work of Garaud & Kulenthirarajah (2016), we then anticipate that instabilities of
the mean applied vertical shear would drive adiabatic motions rather than thermally diffusive ones
in the absence of horizontal shear.
We now define the quantity Jin as the ‘input’ Richardson number based on the imposed vertical

shear:

Jin =
N2

S2
=

B

Ŝ2
. (16)

This quantity is listed in Table 3.1 for each simulation. As explained in Section 1.1, when the mean
Richardson number is significantly smaller than 1, adiabatic perturbations gain more energy from
the mean vertical shear than they lose from mixing the stratification (Richardson 1920). Turbulence
can be sustained in this manner, and we therefore expect the vertical shear to play an important role
in the flow dynamics. By contrast, when the Richardson number (and the Péclet number) are both
significantly greater than 1, turbulence cannot be sustained by the mean vertical shear only, and one
must rely on the horizontal shear instabilities instead to drive it.
Note that most stars generally have J ≫ 1 in their stably stratified radiative zones, even in regions

of strong vertical shear (in the bulk of the solar tachocline, for instance, J ∼ 103−104 and only drops
to zero very close to the base of the convection zone). Nevertheless, for the sake of completeness, we
have run simulations that span a wide range of values of Jin including cases where Jin < 1.

3.2. Qualitative characteristics of the flow evolution and properties

3.2.1. Temporal evolution of selected simulations
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B Ŝ Jin ûrms ŵrms l̂z ûrms ŵrms l̂z

1 0(a) ∞ 1.69± 0.3 0.87± 0.07 0.48± 0.06

1 0.577 3 1.77± 0.31 0.94± 0.07 0.51± 0.07

1 1 1 2.11± 0.24 1.01± 0.07 0.44± 0.05 1.89± 0.15 0.95± 0.06 0.46± 0.06

1 2 0.25 2.47± 0.25 1.24± 0.08 0.40± 0.06 1.4± 0.08 0.79± 0.04 0.42± 0.06

1 4 0.0625 4.42± 0.4 2.88± 0.31 0.51± 0.13 0.97± 0.03 0.58± 0.02 0.32± 0.03

1 4(b) 0.0625 0.99± 0.01 0.59± 0.007 0.30± 0.01

10 0(a) ∞ 2.17± 0.2 0.64± 0.07 0.29± 0.02

10 0.577 30 1.59± 0.22 0.60± 0.06 0.30± 0.03 1.50± 0.12 0.59± 0.03 0.32± 0.02

10 1 10 1.95± 0.16 0.67± 0.06 0.30± 0.02 1.43± 0.09 0.59± 0.03 0.31± 0.01

10 2 2.5 1.83± 0.24 0.62± 0.06 0.32± 0.04 2.72± 0.15 0.78± 0.09 0.22± 0.04

10 4 0.625 2.48± 0.11 0.75± 0.05 0.18± 0.007 1.64± 0.06 0.55± 0.04 0.20± 0.01

10 4(b) 0.625 1.64± 0.04 0.55± 0.02 0.20± 0.01

30 0(a) ∞ 2.53± 0.25 0.46± 0.08 0.20± 0.01

30 0.577 90 1.89± 0.17 0.44± 0.07 0.20± 0.01 1.66± 0.13 0.42± 0.04 0.21± 0.01

30 1 30 1.73± 0.20 0.42± 0.05 0.21± 0.01 1.52± 0.15 0.41± 0.04 0.21± 0.01

30 2 7.5 1.81± 0.25 0.49± 0.08 0.21± 0.01 1.23± 0.13 0.39± 0.02 0.22± 0.01

30 4 1.875 2.21± 0.27 0.46± 0.04 0.20± 0.02 2.52± 0.17 0.55± 0.13 0.18± 0.05

30 4(b) 1.875 2.65± 0.05 0.48± 0.02 0.13± 0.008

100 0(a) ∞ 1.94± 0.15 0.26± 0.06 0.15± 0.01

100 0.577 300 1.87± 0.13 0.26± 0.04 0.16± 0.01 1.82± 0.06 0.25± 0.02 0.15± 0.06

100 1 100 1.58± 0.17 0.25± 0.03 0.16± 0.02 1.95± 0.11 0.26± 0.04 0.15± 0.001

100 2 25 2.05± 0.15 0.29± 0.04 0.17± 0.01 1.78± 0.15 0.25± 0.05 0.15± 0.007

100 4 6.25 1.61± 0.13 0.25± 0.04 0.25± 0.05 1.41± 0.28 0.21± 0.05 0.14± 0.01

100 4(b) 6.25 1.31± 0.08 0.19± 0.02 0.14± 0.04

Table 1. Input parameters and salient results for the constant vertical shear case (columns 4-6) and the
sinusoidal shear case (columns 7-9). In all of the simulations, Re = 600, Pe = 60. The rms velocities ûrms

and ŵrms, and the vertical eddy scale l̂z, are extracted from the DNS as described in Section 3.3. (a) denotes
simulations from Garaud (2020a). (b) denotes sinusoidal shear simulations in a domain of height L̂z = 2π
rather than L̂z = 2π/Ŝ.

In this section we describe the typical temporal evolution and route to nonlinear saturation of
the turbulence for selected simulations to illustrate the range of possible behaviors of the two model
systems. We begin by looking in Figure 2 at a simulation which has a relatively large input Richardson
number, anticipating that it should be dominated by horizontal shear instabilities. It has a mean
sinusoidal shear in both y and z directions, with B = 10, Ŝ = 1 (so Jin = 10), and is initialized from
noise at t = 0. Fig. 2(a) shows as solid lines the quantities ûrms(t), v̂rms(t) and ŵrms(t), defined as

ûrms(t) = ⟨û2⟩1/2, v̂rms(t) = ⟨v̂2⟩1/2, and ŵrms(t) = ⟨ŵ2⟩1/2, (17)

where the brackets denote a volume average. Snapshots of the streamwise velocity field at selected
times are also shown in Fig. 2(b).
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At early times, the mean flow driven by the body force F̂ = sin(y + Ŝz)ex simply grows linearly
with time (see first snapshot). This flow is linearly unstable to shear instabilities, and perturbations
begin to grow. They reach a sufficiently large amplitude to disrupt that mean flow around t = 10.
These perturbations are spatially complex (see second snapshot), and their nature depends quite
strongly on the dominant instability at any given point in time. While they are interesting in their
own right, they are not the subject of this investigation as they rapidly evolve into fully-developed
turbulence that saturates into a statistically stationary state (see third snapshot).
For this particular choice of input parameters, the statistically stationary state achieved looks

quite similar to the one described in Garaud (2020a) for simulations with no vertical shear. A
horizontal shear instability of the mean flow causes and maintains large-scale horizontal meanders.
After saturation, these are characterized by typical horizontal velocity components that are of the
same order of magnitude, i.e., ûrms ≃ v̂rms. The meanders decouple vertically on some short vertical
lengthscale, and the resulting streamwise flow looks quite different from the one that is directly
forced by F̂ (this can be seen by comparing the first and third snapshots). This decoupling generates
substantial emergent, small-scale vertical shear that seems unstable to vertical shear instabilities
even though the mean shear is not and therefore drives vertical mixing on small scales. The strong
stratification implies that the typical vertical velocities are much smaller than the horizontal ones,
so ŵrms ≪ ûrms, v̂rms.
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Figure 2. (a) Rms velocity components ûrms, v̂rms, and ŵrms as a function of time, for a simulation with
Re = 600, P e = 60, B = 10, Ŝ = 1 where the vertical shear is sinusoidal. (b-d) Snapshots of the streamwise
velocity û at selected times (t = 9, t = 12 and t = 70) showing the mean flow before onset of instability, the
onset of instability, and the saturated state, respectively.
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Figure 3, by contrast, shows two simulations that have a relatively low input Richardson number,
namely Jin = 0.625 (B = 10, Ŝ = 4). Both were restarted from other simulations at the same
shearing rate but a different stratification. The solid lines show the case where the background shear
is constant, while the dashed lines show the case where the background shear is sinusoidal. This
time, we see that v̂rms is substantially smaller than ûrms in both simulations once in the statistically
stationary state. We find that ŵrms ∼ v̂rms ≪ ûrms, consistent with the findings of Garaud &
Kulenthirarajah (2016) and Garaud et al. (2017) for cases without horizontal shear. The two setups
are otherwise quite different, however. In the sinusoidal shear case, we see in the corresponding
snapshot that the streamwise velocity field û is dominated by a coherent mean flow∝ sin(y+Ŝz). This
implies that it contains the necessary inflection points to directly trigger a vertical shear instability
since Jin is small. The constant shear case, as discussed earlier, is linearly stable to the vertical
shear instability. However, the emergence of meanders from the horizontal shear instability rapidly
creates the vertical structure needed to trigger the vertical shear instability (see more on this in the
next section). Because the meanders are necessary for saturation, the velocity components satisfy
ŵrms ≤ v̂rms ≪ ûrms in this case.
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Figure 3. (a) Rms velocity components ûrms, v̂rms, and ŵrms as a function of time, for simulations with
Re = 600, P e = 60, B = 10, Ŝ = 4. The solid lines show the constant shear case, while the dashed lines
show the sinusoidal shear case. (b) Snapshot of û at t = 70 in the constant shear case. (c) Snapshot of û at
t = 70 in the sinusoidal shear case.

Finally, we note that while most simulations achieve a statistically stationary state relatively rapidly,
in a few instances we have observed a long-lived transient flow dominated by vertical shear instabili-
ties, which eventually transitions into a statistically stationary state that is dominated by horizontal
shear instabilities. This can be seen in the case presented in Figure 4, which has an applied mean
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sinusoidal shear in both the y and z directions, with B = 30, Ŝ = 2, and was initialized at t ≃ 20
from a corresponding simulation with a lower stratification (B = 10) and identical shearing rate.
At early times, the turbulence has properties that are characteristic of simulations dominated by
vertical shear instabilities (with ŵrms ≃ v̂rms ≪ ûrms). This state lasts for about 40 time units, and
appears to be relatively stationary in time. However, around t = 60 a complete reorganization of
the flow takes place. We see that v̂rms increases rapidly while ûrms decreases, owing to the growth
and saturation of a large-scale horizontal shear instability. A new (and this time true) statistically
stationary state is established, whose properties are qualitatively similar to the ones described earlier
for the B = 10, Ŝ = 1 case. Notably, we see that once again ŵrms ≪ ûrms ≃ v̂rms.
Based on these results, we have run all simulations for at least 50 time units once it appears that

a statistically steady state has been reached (and often for much longer).

20 40 60 80 100 120

t

1

2

3

4

R
M

S
V
el

o
ci

ty
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Figure 4. (a) Rms velocity components ûrms, v̂rms, and ŵrms as a function of time, for a simulation with
Re = 600, P e = 60, B = 30, Ŝ = 2 where the vertical shear is sinusoidal. (b,c) Snapshots of the streamwise
velocity û at selected times (t = 40, and t = 90).

3.2.2. Qualitative properties of the statistically stationary state

We now investigate visually the properties of the statistically stationary state ultimately achieved
by each of the simulations. Figure 5 shows typical snapshots of the streamwise component of the
flow û in the plane x = 0 for many different simulations. The left-most column shows simulations
with B = 1 (effectively unstratified), the middle columns show B = 10 and B = 30 (intermediate
stratification) and the rightmost column shows B = 100 (strong stratification). The top row has
Ŝ = 0, for reference, and is taken from the simulations of Garaud (2020a). The remainder of the
figure shows cases with Ŝ = 1, 2 and 4, and two rows are shown each time: for each value of Ŝ the
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vertical shear is constant in the upper row, and sinusoidal in the lower row. Figure 5 reveals several
important trends, with increasing stratification, and with increasing shear.
In the absence of mean vertical shear (top row, Ŝ = 0, Jin = ∞), we see the results of Garaud

(2020a). For B = 1, the fluid is effectively unstratified. The applied force drives a mean flow (visible
in the snapshot) subject to horizontal shear instabilities that rapidly evolve into 3D turbulence. The
latter is almost isotropic except near the forcing scale. As the stratification increases (B = 10, 30),
meanders in the streamwise flow appear (visible as a zig-zag pattern in û). These, as discussed earlier,
are driven by the horizontal shear instability and become shallower as B increases. The emergent
vertical shear ∂û/∂z correspondingly increases and the flow adapts to be marginally unstable to a
small-scale vertical shear instability, even though there is no mean vertical shear (see Section 3.3).
For very large stratification (B = 100), the vertical scale of the flow meanders becomes so small that
they begin to feel the effects of viscosity; the turbulence becomes intermittent.
When Ŝ ̸= 0 but Jin ≫ 1 (i.e. when Ŝ = 1 for any B > 1, Ŝ = 2 for B = 30 or B = 100, and Ŝ = 4

for B = 100), we see from Figure 5 that the snapshots are similar to those of the corresponding Ŝ = 0
simulation, regardless of the method by which the vertical shear is forced (constant or sinusoidal).
Based on the discussion of Section 3.1, this is not surprising, as we would not expect the mean vertical
shear to play a significant dynamical role, even though it is greater than the horizontal shear.
By contrast, when Jin ≪ 1 (e.g. when Ŝ = 4 for B ≤ 10), the flow depends sensitively on the

manner in which the vertical shear is forced, confirming what was found in the previous section. In
the sinusoidal shear case, û is clearly in phase with the forcing, and is linearly unstable to the vertical
shear instability, whose growth rate is O(Ŝ) since the stratification is weak. This is much larger than
the horizontal shear instability growth rate (which is of order unity in the non-dimensionalization
selected), which explains why we do not see any meanders (no zigzag patterns). In the constant
shear case, by contrast, the vertical shear alone is not linearly unstable, and it is the development of
flow meanders that triggers the vertical shear instability. We indeed see that û has strong meanders,
and moreover, we now also see that these develop on roughly the same vertical scale as those of
corresponding Ŝ = 0, 1 and 2 cases with the same value of B, suggesting that they arise from the
same horizontal shear instability.
Finally, when Jin is close to one, the outcome is not always as easily predictable. For instance, with

Ŝ = 4 and B = 30, Jin = 2 and one might have expected the flow to be dominated by horizontal
shear instabilities. However, the corresponding snapshot for the sinusoidal forcing case in Figure 5
looks much more similar to those of the simulations where Jin ≪ 1, suggesting that it is probably
dominated by vertical shear instabilities instead. Cases with Jin ∼ O(1) therefore require a more
quantitative inspection, which is presented in the next section.

3.3. Quantitative analysis of the results

We now take a closer look at the quantitative properties of each simulation. We first characterize
the mean flow that is driven in each case and demonstrate that by constructing a Richardson number
based on the actual mean vertical shear (rather than the input parameter Ŝ), it is possible to explain
the qualitative behavior of the resulting turbulent flow more accurately.

3.3.1. Mean flow properties and associated regime

In what follows, we define the mean flow to be the component of the streamwise flow û that projects
on the particular Fourier mode whose spatial structure is the same as that of the forcing. In the case
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Figure 5. Simulation snapshots of û in the x = 0 plane, for increasing shear Ŝ (from top to bottom) and
stratification B (from left to right). Simulations with Ŝ = 0 are from Garaud (2020a). For Ŝ ∈ {1, 2, 4},
the top row shows snapshots for the constant vertical shear case (Sect. 2.1), and the bottom one for the
sinusoidal shear case (Sect. 2.2). The color bar is in units of ûrms given for each simulation in Table 3.1. All
simulations were run in a domain with height L̂z = 2π except for the sinusoidally-forced Ŝ = 2 case, which
was run in a domain with L̂z = π (two copies of the snapshot are thus shown).
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of the constant shear profile, the mean flow is defined as

ŪC(y, z) = Ûm sin(y) + Ŝz, where Ûm =
⟨û(x, y, z, t) sin(y)⟩t

⟨sin2(y)⟩
= 2⟨û(x, y, z, t) sin(y)⟩t, (18)

(recalling that û in this case is defined as the perturbation away from the constant shear flow) so the
mean vertical shear is simply Ŝm = Ŝ. In this expression, ⟨·⟩t denotes a volume and time average
over the statistically stationary phase. In the sinusoidal shear case, the mean flow is defined as

ŪS(y, z) = Ûm sin(y + Ŝz), where Ûm =
⟨û(x, y, z, t) sin(y + Ŝz)⟩t

⟨sin2(y + Ŝz)⟩
= 2⟨û(x, y, z) sin(y + Ŝz)⟩t, (19)

so the mean vertical shear is Ŝm = ŜÛm.
Using this definition, we can construct a ‘typical’ Richardson number of the mean flow, Jm, based

on the rms of the vertical shear profile of that flow (which is Ŝm for the constant shear case, but is
Ŝm/

√
2 for the sinusoidal shear case):

Jm = JC =
B

Ŝ2
m

=
B

Ŝ2
= Jin in the constant shear case

Jm = JS =
2B

Ŝ2
m

=
2Jin

Û2
m

in the sinusoidal shear case. (20)

Note that choosing to define Jm using the rms of the mean shear, rather than its maximum value
Ŝm, eases the comparison of Jm with the Richardson number of the full flow field Jrms defined in the
next section.
Figure 6(a) shows JC (solid symbols) and JS (open symbols) as a function of Ŝ for different values

of B. These Richardson numbers measure the strength of the typical mean vertical shear relative to
the imposed stratification. Using the same symbols, Figure 6(b) shows Ûm. For the constant shear
case, JC = Jin = B/Ŝ2, which is easily predictable from the input parameters (and is shown in the
straight lines / full symbols). As discussed earlier, the simulations span a wide range of Richardson
numbers in the interval [0.05, 500]. In the sinusoidal shear case, however, JS is allowed to deviate
from Jin. We see that JS is close to Jin for strongly stratified simulations, but can be substantially
smaller than Jin for more weakly stratified systems (see, in particular, B = 10 with Ŝ = 2, and
B = 30 with Ŝ = 4, where Jin is somewhat greater than 1, but JS < 1). This confirms our earlier
conclusion based on the snapshots only (see Figure 5) that these simulations are indeed dominated
by vertical shear instabilities. In Figure 6(a) and in all that follows, all of the simulations that have
Jm ≤ 1 are marked with solid and open circles, respectively, while those with Jm ≫ 1 are marked
with squares. We have also marked those with Jm ∈ [1, 4] with triangles, to indicate that these are
borderline cases.
To understand why JS can be much smaller than Jin in the sinusoidal shear case, we look at

Figure 6(b). In all strongly stratified cases (square symbols), Ûm ≃ 1. This is consistent with
the dynamics being dominated by horizontal shear instabilities, where in the non-dimensionalization
selected here, large-scale meanders and ‘pancake’ eddies with horizontal lengthscale l̂y ∼ O(1) create
O(1) horizontal Reynolds stresses to balance the O(1) forcing. For simulations dominated by the
vertical shear instability (circular symbols), however, we see that Ûm can be substantially larger. This
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is because the turbulent eddies have l̂y ∼ l̂z ≪ 1 in that regime (Garaud & Kulenthirarajah 2016;
Garaud et al. 2017). As a result, Ûm must be correspondingly larger to ensure that the Reynolds
stresses match the O(1) forcing. With a large Ûm, Ŝm is also necessarily large, and JS can be
substantially smaller than Jin.
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Figure 6. Properties of the mean flow as a function of Ŝ and B. Left: typical Richardson number Jm of the
mean flow, defined in equation (20) (JC in the constant shear case, solid symbols, and JS in the sinusoidal
shear case, open symbols). Symbol color represents B as shown in the legend of the right panel. Simulations
with Jm ≤ 1 are marked with circles, and are dominated by vertical shear instabilities. Those with Jm ≫ 1
are marked with squares and are dominated by horizontal shear instabilities. Intermediate cases are marked
with triangles. Right: The same for the mean flow amplitude Ûm (see definition in equations 18 and 19).

Finally, we note that this discussion is only relevant for the interpretation of the simulation results.
Observations of the mean shear in real stars (or the output of stellar evolution codes that include
such information) provide Ŝm directly, so there is no ambiguity on the Richardson number. In what
follows, we therefore report all the results in terms of Ŝm or in terms of the corresponding Richardson
number Jm (JC or JS).

3.3.2. Properties of the emergent shear due to the flow meanders

Having identified that two regimes are expected depending on the size of the typical Richardson
number of the mean flow (Jm = JC , JS), we now investigate in turn the properties of the turbulence
in each case. To do so, we begin by constructing a diagnostic of the emergent shear created by the
horizontal flow meanders. We first average the streamwise flow horizontally:

ū(y, z, t) =
1

L̂x

∫ L̂x

0

û(x, y, z, t)dx. (21)

We then define the rms vertical shear associated with ū as

ŝrms = ⟨s̄2(y, z, t)⟩1/2t , (22)

where s̄ = Ŝ + ∂ū/∂z in the constant shear case, and s̄ = ∂ū/∂z in the sinusoidal shear case. Note
that we define ŝrms from the horizontally-averaged flow ū rather than local flow û, because a shear
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flow has to be coherent over some significant distance in the streamwise direction to drive vertical
shear instabilities. With that definition, ŝrms ≃ Ŝm in the absence of meanders, so the difference
between ŝrms and Ŝm can be identified as the typical meander-induced shear.
The values of ŝrms extracted from each simulation are compared with Ŝm in Figure 7(a). Consistent

with their definition, we always have ŝrms ≥ Ŝm. Very clearly, we see that simulations that are
dominated by vertical shear instabilities in the sinusoidal shear case (open circles) have ŝrms ≃ Ŝm,
which is consistent with the visual impression originally gained from Figure 5 that these cases do
not have substantial flow meanders. In most other cases, ŝrms ≫ Ŝm, indicating that meanders are
present and play a key role in maintaining the turbulence. In cases that are dominated by horizontal
shear instabilities (i.e., Jm ≫ 1, open and filled square symbols) ŝrms seems to be independent of the
mean vertical shear (and of the manner it is forced) but instead only depends on the stratification
(via B).
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Figure 7. Properties of the rms vertical shear emerging from the various flow instabilities. Left: ŝrms

as a function of the typical mean shear Ŝm (Ŝ in the constant shear case, solid symbols, and ŜÛm/
√
2 for

the sinusoidal shear case, open symbols). Symbol color represents B. Filled symbols are for the constant
shear case, and open symbols are for the sinusoidal shear case. Right: The same data presented in terms of
Richardson numbers Jrms = B/ŝ2rms vs. Jm = B/Ŝ2

m.

To better understand why this is the case, we now turn to Figure 7(b), which shows the same
information but in terms of the corresponding ‘rms Richardson number’

Jrms =
B

ŝ2rms

(23)

against Jm (JS for the sinusoidal case, JC for the constant shear case). We see very clearly that
whenever Jm ≫ 1, Jrms ≃ 2. In other words, the meanders adjust themselves precisely so that they
are in a neutrally stable state with respect to the energetics of vertical shear instabilities. Indeed, it
is easy to verify that if Jrms ≃ 2 then an equivalent Richardson number based on the characteristic
maximum vertical shear (instead of the rms shear) would be closer to 1. When this is the case,
small-scale vertical eddies take kinetic energy from the flow meanders and lose potential energy to
the stratification in equal amounts.
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Dimensionally, Jrms = O(1) implies that srms = O(N). Since the horizontal velocity of the meanders
is O(Um), the vertical scale of the meanders lz must be O(Um/N) to ensure that srms = O(Um/lz) =
O(N). In short, Figure 7(b) shows that the meanders of the flow adjust themselves to be close to
marginal stability for the vertical shear instability, and to do so self-consistently, must have vertical
structure on scales lz = O(Um/N). This characteristic scale for stratified turbulence at high Péclet
number has long been known in the geophysical literature (e.g. Holford & Linden 1999; Billant &
Chomaz 2001; Brethouwer et al. 2007). It is entirely consistent (from a theoretical perspective) with
the recent multiscale analysis of Chini et al. (2022) and Shah et al. (in prep.), who argued that this
scaling is expected as long as Pe ≫ B1/2 and as long as viscous effects can be neglected. Our results
suggest that it continues to hold as long as the Richardson number based on that mean vertical shear
is substantially larger than one (e.g., Jm ≥ 5, say).
For weaker stratification, namely Jm ≤ O(1), we saw in Section 3.2.1 that the statistically stationary

state achieved depends on the manner in which the flow is forced. For the sinusoidal case (open
circles), we saw that meanders are essentially absent, so Jrms ≃ Jm. In the constant-shear case
(filled circles and triangles), on the other hand, the mean flow is linearly stable to the vertical shear
instability, so the latter relies on the onset of meandering via horizontal shear instabilities to set in.
In that case, ŝrms must necessarily exceed Ŝm. In practice, however, we find that ŝrms is only a little
larger than Ŝm or equivalently, Jrms is a little smaller than Jm.

3.3.3. Turbulent mixing

We now study vertical mixing by the turbulence in each simulation. As introduced in Section 1,
an important quantity of interest for stellar evolution calculations is the so-called vertical mixing
coefficient Dmix, which is the turbulent diffusivity of momentum or a trace chemical element. As
long as the turbulence is not intermittent, this coefficient can be estimated (non-dimensionally) from
the product of a characteristic vertical velocity of the turbulence (ŵrms) and a characteristic vertical
eddy height (l̂z):

D̂mix ≃ cŵrmsl̂z → Dmix ≃ cŵrmsl̂zUhLh (24)

where c is some constant of order unity. The quantity ŵrms is easily obtained from the simulations
by taking the time average of ŵrms(t) once the system has reached a statistically stationary state.
For the one shown in Figure 2, for instance, that average is taken between t = 30 and t = 95, and is
equal to ŵrms = 0.59±0.03, where the ±0.03 captures the rms temporal variability of ŵrms(t) around
the mean value 0.59. The values of ŵrms thus computed, for all available simulations, are presented
in Table 3.1.
To calculate the eddy height l̂z, following Garaud (2020a), we compute the vertical auto-correlation

of the vertical velocity field, defined as:

Aw(l̂, t) = ⟨ŵ(x, y, z, t)ŵ(x, y, z + l̂, t)⟩ . (25)

The vertical lengthscale of the eddies at a given time tn is then defined as the width at half maximum
of Aw(l̂, tn). In other words, l̂z(tn) is the solution of

Aw(l̂z(tn), tn) =
1

2
Aw(0, tn) . (26)

Finally, l̂z is defined as the average of all lengthscales thus computed for a given simulation once
the system is in the statistically stationary state. The results are presented in Table 3.1. Note that
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the full velocity field is only saved every 10,000 timesteps at this value of Re, which, owing to the
Courant condition, approximately corresponds to intervals ∆tn of 0.5 to 3 time units depending on
the simulation. In general l̂z is then computed from an average of 20–60 snapshots. Because this
number is relatively small, the statistics of l̂z are not as robust as those of ŵrms.
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Figure 8. Vertical eddy scale l̂z (top left), rms vertical velocity ŵrms (top right), and estimated mixing
coefficient D̂mix = l̂zŵrms (bottom left) as a function of the typical mean vertical shearing rate Ŝm and the
stratification B (indicated by the line colors, see legend). Filled symbols connected by solid lines correspond
to the constant shear case, and open symbols connected by dashed lines correspond to the sinusoidal shear
case. The bottom right figure shows D̂mix as a function of the typical mean Richardson number Jm = (JC , JS)

Fig. 8 shows l̂z (top left) and ŵrms (top right) as a function of the typical vertical shearing rate of
the mean flow Ŝm for various values of the stratification parameter B. Consistent with the qualitative
picture revealed by Figure 5 and originally presented in Garaud (2020a) for the Ŝm = 0 dataset, we
see that both the vertical eddy scale and the vertical velocity decrease with increasing stratification
(increasing B). As Ŝm increases at fixed values of B = 1, 10 and 30 (but not B = 100, see below), we
see that the mean shear, and the manner in which it is forced, have little influence on l̂z and ŵrms

as long as Jm ≥ 1 (open and closed square and triangular symbols), but begin to affect them when
Jm < 1. Overall, this is not surprising based on the discussions of the previous sections. By contrast,
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the effects of a strong (Jm < 1) constant or sinusoidal shear on l̂z and ŵrms are complex (sometimes
increasing them, sometimes decreasing them). Since this limit is fairly rare in stellar interiors, we do
not investigate it further in this paper.
In the strongly stratified case (B = 100), we were initially surprised to find that the mean shear

does affect the turbulence even though Jm ≫ 1 – in this case, it does so as soon as Ŝm > 1. However,
this behavior can be understood by noting that B = 100 is in a regime where the turbulence is
spatially intermittent at Ŝ = 0 (Garaud 2020a). When that is the case, the degree of intermittency
(i.e., the fraction of the domain covered by turbulent patches) depends quite sensitively on the
existence of nonlinear mechanisms that help the turbulence self-sustain and percolate through the
flow (Deusebio et al. 2015; Avila et al. 2023). We hypothesize that a strong vertical shear might
stretch these turbulent patches and disrupt the self-sustaining process. The effect is clearly different
in the constant and sinusoidal shear cases, sometimes increasing or decreasing l̂z or ŵrms. We defer
the analysis of the intermittent regime to future work, as we believe that it is not particularly relevant
to stellar interiors. Indeed Shah et al. (in prep) demonstrated that stratification is strong enough
for the turbulence to be in the intermittent regime only when B > Re (unless thermal diffusion is
important, see the original paper for detail), or equivalently in dimensional terms when

Uh

Lh

≪
(
N2ν

L2
h

)1/3

. (27)

In stars, this corresponds to regions of very small horizontal shear, in which the corresponding vertical
transport would likely be negligible anyway.
The lower two panels of Figure 8 show D̂mix = ŵrmsl̂z as functions of Ŝm (left) and Jm = JC , JS

(right). The values of D̂mix for B = 100 are shown for reference, but should be ignored as the formula
used is not reliable in that case because of the turbulence intermittency. Following our findings for
the behavior of l̂z and ŵrms, we see that D̂mix decreases steadily with increasing stratification and
is roughly independent of the shearing rate and the manner in which the vertical shear is forced as
long as Jm ≥ 1 (squares and triangles).
Based on the results presented in this section we can therefore make the following statement with

reasonable confidence: as long as thermal diffusion and viscosity are negligible (so the turbulence
is both fully developed and adiabatic), a mean vertical shear has no effect on mixing driven by
horizontal shear instabilities when its mean Richardson number is greater than one. While this is
not particularly surprising in hindsight, it is worth emphasizing that this statement likely applies to
the vast majority of stellar shear layers, even when the vertical shearing rate is much greater than the
horizontal one, which is perhaps a little less intuitive. A good example of this is the solar tachocline,
where the vertical shear is over 20 times stronger than the horizontal shear (Charbonneau et al. 1999).
The fact that J = O(103 − 104) ≫ 1 in the tachocline (Garaud 2020a) shows that unless horizontal
shear instabilities are somehow suppressed by processes not included here (see the discussion below),
the turbulence they generate dominates vertical mixing, while the mean vertical shear can essentially
be ignored in the computation of Dmix!

4. DISCUSSION AND CONCLUSIONS

In this paper, we have used DNS to investigate the combined effects of vertical and horizontal
shear on mixing by shear instabilities in the stably stratified regions of stars. We ignored rotation
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and magnetic fields for now. The horizontal shear was forced to be sinusoidal in the spanwise
direction (here, y), and we compared two types of vertical shear profiles (constant vs. sinusoidal).
The numerical simulation parameters were selected to be in a regime where thermal diffusion is
negligible on the large horizontal and vertical scales, while having a low Prandtl number. This
regime (rather than the parameters themselves) is consistent with what is expected in a typical
stellar interior (Garaud & Kulenthirarajah 2016; Garaud 2020a).
Within this set of assumptions, we found that two dynamical regimes naturally emerge, depending

on the Richardson number Jm = N2/S2
m, where Sm is a typical value of the large-scale vertical shear.

When Jm is of order unity or smaller, vertical shear instabilities dominate the system dynamics.
The form they take (and the amount of mixing they cause) depends sensitively on the geometry
of the vertical shear and more specifically on whether it can trigger a linear instability or not. In
addition, even though we have only considered regions with a constant stratification in this paper,
there is ample evidence from the oceanographic literature (see the review by Caulfield 2021) showing
that the outcome will depend sensitively on the shape of the density profile and must be studied
on a case-by-case basis. Regions of stars with Jm < O(1) are rare, however, so this regime is not
particularly relevant to stellar evolution in general.
In the far more likely instances where Jm ≫ 1, horizontal shear instabilities control the system

dynamics, and the mean vertical shear has little influence on vertical mixing (unless the stratification
is so strong that the turbulence itself is intermittent or suppressed, see Section 3.3.3). This is because
the large-scale horizontal perturbations excited by the horizontal shear instability (meanders, or
pancake vortices) decouple in the vertical direction on small vertical scales and drive a much stronger
vertical shear. More specifically, we showed in Section 3.3 that this emergent meander-induced shear
srms satisfies the marginal stability condition Jrms = N2/s2rms = O(1), so srms = O(N), which by
definition of this regime is much larger than the mean shear Sm. As a result, vertical mixing is
entirely driven by the emergent rather than mean vertical shear. When that is the case, models for
mixing by horizontal shear instabilities alone can be safely applied – at least once the controversy as
to which model should be used is resolved, see Section 1.2 for detail.
There are, of course, several caveats to this statement. First, note that we have ignored in this

work the effects of thermal diffusion by purposefully selecting parameters in which the turbulence
generated is known to be relatively adiabatic. This, we believe (see Garaud & Kulenthirarajah 2016;
Garaud 2020a, and Shah et al., in prep), is the more common situation in stars, but that belief
is somewhat controversial (see, e.g. Skoutnev 2023). Presumably, the criterion will be similar in
the thermally diffusive case – i.e the mean shear can be ignored when it is much smaller than the
meander-induced shear – but this hypothesis will need to be verified. More importantly, we have also
ignored in this paper several effects that could suppress the horizontal shear instabilities themselves.
Indeed, sufficiently strong rotation, or strong streamwise magnetic fields (both of which are present in
the solar tachocline, for example) can stabilize purely two-dimensional horizontal shear instabilities
(see, e.g., the discussion in Garaud 2021). When that is the case, the vertical shear may be needed
to provide an alternative route to turbulence and must not be neglected.
Finally, we acknowledge that there are, of course, many other forms of hydrodynamic or magneto-

hydrodynamic (MHD) instabilities in stars, such as double-diffusive thermocompositional instabilities
(see the reviews by Garaud 2018, 2020b), centrifugal instabilities (Solberg 1936; Høiland & Bjerknes
1939), their double-diffusive counterpart (namely the GSF instability Goldreich & Schubert 1967;



24 Garaud et al.

Barker et al. 2019, 2020), baroclinic instabilities (Spruit & Knobloch 1984; Gilman & Dikpati 2014),
magnetic buoyancy instabilities (Acheson 1979; Spiegel & Weiss 1982; Vasil & Brummell 2008), MHD
shear instabilities (Dikpati & Gilman 1999; Spruit 1999), the magnetorotational instability (Balbus
& Hawley 1991; Menou & Le Mer 2006) and the Tayler-Spruit instability (Spruit 2002; Ji et al.
2023; Petitdemange et al. 2023). These (and others) are known to be relevant at various evolution-
ary stages, and will take over if their growth rate significantly exceeds that of the horizontal shear
instabilities. As such, this work is only relevant when these other sources of mixing are negligible.
Nevertheless, by carefully characterizing the conditions under which each instability can grow, and
how much mixing they cause, we can gradually make progress in advancing our understanding of
their role in stellar evolution. This paper has taken one more step in this direction.
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